A Methyl Group Bridging on Three Metal Atoms. Solid-State and Solution Structural Characterization of the $[Re_3(\mu-H)_3(\mu_3-CH_3)(CO)_9]^-$ Anion

T. Beringhelli,* G. D'Alfonso,* M. Panigati, and F. Porta

Dipartimento di Chimica Inorganica Metallorganica e Analitica e Centro CNR CSSMTBO, via Venezian 21, 20133 Milano, Italy

P. Mercandelli,* M. Moret, and A. Sironi

Dipartimento di Chimica Strutturale e Stereochimica Inorganica e Centro CNR CSSMTBO, via Venezian 21, 20133 Milano, Italy

Received September 22, 1998

Surface methyls have been proposed as intermediates in Fischer-Tropsch synthesis¹ and in methane activation over metals.² Several studies have provided evidence for CH₃ on metal surfaces3 and in most cases vibrational spectroscopies have suggested a C_{3v} symmetry, ^{3d-f} either in a top-site or in a 3-fold hollow site. Transition-metal clusters are considered reliable models of the metal surfaces in chemisorption and catalysis⁴ because they offer the possibility of stabilizing unsaturated intermediates through multicenter interactions. However, until now no $C_{3\nu}$ coordinated methyls were known in cluster chemistry.⁵ The only previous example of a μ_3 -methyl in a triangular cluster,⁶ namely $[Fe_3(\mu-H)(\mu_3-H_2CH)(CO)_9]$,¹¹ showed agostic interactions lowering the symmetry to C_s . Moreover, this species was detected only by ¹H NMR, due to its thermal instability. The $[Re_3(\mu-H)_3(\mu_3-\mu)_3(\mu_$ $(CO)_9$ anion (1) here reported offers, therefore, the first opportunity for a full characterization, in the solid state and in solution, of a methyl group interacting with three transition metals.

The anion 1 is obtained in high yield by reacting the unsaturated anion $[\text{Re}_3(\mu-H)_3(\mu_3-H)(\text{CO})_9]^{-12}$ with CH_2N_2 .¹³ The NMR data

Am. Chem. Soc. 1980, 102, 6181. (d) Bell, A. T. Catal. Rev.-Sci. Eng. 1981, 23, 203. (e) Baetzold, R. C. J. Phys. Chem. 1984, 88, 5583.
(2) (a) Pitchai, R.; Klier, K. Catal. Rev.-Sci. Eng. 1986, 28, 13 and references therein. (b) Lee, M. B.; Yang, Q. Y.; Ceyer, S. T. J. Chem. Phys. 1987, 87, 2724. (c) Yang, Q. Y.; Johnson, A. D.; Maynard, K. J.; Ceyer, S. T. J. Am. Chem. Soc. 1989, 111, 8748. (d) Burghgraef, H.; Jansen, A. P. J.; van Santen, R. A. Surf. Sci. 1995, 324, 345.
(3) (a) Steinbach, F.; Kiss, J.; Krall, R. Surf. Sci. 1985, 157, 401. (b) Yates, L. T. Jr. Catas. S. M.; Puscel, L. N. Jr. Surf. Sci. 1985, 164, 1839. (c)

J. T., Jr.; Gates, S. M.; Russel, J. N., Jr. Surf. Sci. 1985, 164, L839. (c) Kaminsky, M. P., Winograd, N.; Geoffroy, G. L. J. Am. Chem. Soc. 1986, 1361 and references therein.

(4) Muetterties, E. L.; Rhodin, T. N.; Band, E.; Brucker, C. F.; Pretzer, W. R. Chem. Rev. 1979, 79, 91.

(5) Methyl groups capping the triangular faces of Li_4 tetrahedra are present organomet. Chem. 1964, 2, 197.

(6) The μ_2 -bridging coordination is much more common⁷ and often involves agostic interactions.⁸ In triangular clusters it has been observed in $[Os_3(\mu-H)(\mu-HCH_2)(CO)_{10}]^9$ and in $[Re_3(\mu-CH_3)_3(CH_3)_6(PEt_2Ph)_2]$.¹⁰

(7) See, for example: Holton, J.; Lappert, M. F.; Pearce, R.; Yarrow, P. I. W. Chem. Rev. 1983, 83, 135, and references therein.

(8) (a) Brookart, M.; Green, M. L. H.; Wong, L. L. Prog. Inorg. Chem. 1988, 36, 1. (b) Crabtree, R. H.; Hamilton, D. G. Adv. Organomet. Chem. 1988. 28. 299.

(9) (a) Calvert, R. B.; Shapley, J. R. J. Am. Chem. Soc. 1977, 99, 5225. (b) Calvert, R. B.; Shapley, J. R. J. Am. Chem. Soc. 1978, 100, 7726.

indicate a C_{3v} symmetry of the whole anion,¹⁴ in agreement with the solid-state structure (Figure 1).¹⁶ **1** contains a nearly equilateral metal atom triangle capped by a triple-bridging methyl ligand, with three hydrides bridging the Re-Re edges on the side opposite the μ_3 -methyl ligand. The Re-C_{Me} distance in the triple-bridging methyl complex 1 (mean 2.401 Å) is longer than those found for terminal and double-bridging methyl ligands in [Re₃(µ-CH₃)₃-(CH₃)₆(PEt₂Ph)₂] (mean 2.158 and 2.304 Å, respectively).¹⁰ The methylic hydrogens have been located as eclipsed with respect to the C_{Me}-Re bonds and directed away from the triangular plane. If the methyl group were regarded as a one-electron donor (isolobal with hydrogen), the anion 1 would be a "super-unsaturated" species (44 valence electrons), as the $[\text{Re}_3(\mu-\text{H})_3(\mu_3-\text{H})(\text{CO})_9]^-$ ¹² and $[\text{Re}_3(\mu-\text{H})_3(\mu_3-\text{AuPPh}_3)(\text{CO})_9]^{-17}$ anions, requiring formally two double Re-Re bonds, delocalized on the three edges. However, the average Re-Re bond distance in 1 (2.984 Å) is longer than that observed in the AuPPh₃ derivative $(2.894 \text{ Å})^{17}$ and comparable to those found for the (saturated) species [Re₃- $(\mu-H)_3(\mu_3-OH)(CO)_9$ ⁻ (2.979 Å)¹⁸ and $[Re_3(\mu-H)_3(\mu_3-O)(CO)_9]^{2-}$ (2.966 Å).¹⁹ This suggests that the methyl ligand should act as a "more-than-one-electron donor". Theoretical calculations²⁰ have indeed evidenced both σ and π donations²¹ to the cluster moiety,²² the latter giving rise, in the light of its C/H (hence Re/H) bonding character and of the short Re····H distances (2.269 Å) and small Re-C-H angles (68.6°), to some degree of agosticity. The title anion can thus be viewed either as a π -stabilized unsaturated species²⁴ or as a saturated one, assuming that the two π orbitals formally donate four electrons.

(10) Edwards, P.; Mertis, K.; Wilkinson, G.; Hursthouse, M. B.; Malik, K. M. A. J. Chem. Soc., Dalton Trans. **1980**, 334. (11) (a) Dutta, T. K.; Vites, J. C.; Jacobsen, G. B.; Fehlner, T. P.

(11) (a) Dutta, 1. K.; Vites, J. C.; Jacobsen, G. B.; Fehiner, I. P. Organometallics 1987, 6, 842. (b) Vites, J. C.; Jacobsen, G. B.; Dutta, T. K.; Fehiner, T. P J. Am. Chem. Soc. 1985, 107, 5563.
(12) (a) Beringhelli, T.; D'Alfonso, G. J. Chem. Soc., Chem. Commun. 1994, 2631. (b) Beringhelli, T.; D'Alfonso, G.; Garavaglia, M. G. J. Chem. Soc., Dalton Trans. 1996, 1771. (c) Horng, H. C.; Cheng, C. P.; Yang, C. S.; Lee, G.-H. Organometallics 1996, 15, 2543.

(13) A sample of [PPh₄][Re₃H₄(CO)₉] (0.074 mmol) in CH₂Cl₂ was treated at 0 °C with an ethereal solution of CH₂N₂ (1.5 mmol). After 1 h the solution

at 0 °C with an ethereal solution of CH₂N₂ (1.5 mmol). After 1 h the solution was concentrated, and slow addition of *n*-hexane gave a ocherous precipitate of [PPh₄]1 (isolated yield 90%). IR, CH₂Cl₂, ν (CO): 2007 s, 1919 s cm⁻¹. (14) ¹H NMR (CD₂Cl₂) δ –6.47 (s, 3H, CH₃), –13.39 (s, 3H, μ -H) at 298 K; δ –6.49, –13.64 at 193 K. ¹³C NMR (CD₂Cl₂) δ 197.16 (3), 185.23 (6), –73.07 (1) at 298 K; δ 197.53, 185.43, –71.39 at 193 K. The presence of three hydrogens bound to the carbon at –73.07 ppm was first proved through a 2D ¹H–¹³C correlation experiment modified according to Bucher et al.¹⁵ and then confirmed by ¹³C–¹H coupled spectra (quartet, ¹J_{CH} 117.3 Hz at 298 K.) 298 K, 118.0 Hz at 193 K).

(15) Bucher, U. E.; Lengweiler, T.; Nanz, D.; von Philipsborn, W.; Venanzi, L. M. Angew. Chem., Int. Ed. Engl. 1990, 29, 548.

(16) X-ray data (295 K): pale yellow crystals of [PPh₄]**1**-Et₂O, monoclinic ($P2_1/n$), a = 14.083(3) Å, b = 12.329(1) Å, c = 23.834(3) Å, $\beta = 97.36(1)$, = 4, R = 0.0208, wR = 0.0463, S = 0.942.

(17) Beringhelli, T.; Ciani, G.; D'Alfonso, G.; De Maldé, V.; Freni, M. J. Chem. Soc., Chem. Commun. 1986, 735.

(18) Beringhelli, T.; D'Alfonso, G.; Freni, M.; Ciani, G.; Molinari, H. J. Organomet. Chem. 1986, 311, 177.

(19) Ciani, G.; Sironi, A.; Albano, V. G. J. Chem. Soc., Dalton Trans. 1977, 1667

(20) DFT calculations at the B3LYP level have been done using a double- ζ plus polarization basis set, incorporating relativistic ECP for rhenium atoms (see Supporting Information). Donor-acceptor interactions between CH₃⁻ and [Re₃] have been analyzed according to a CDA approach: Dapprich, S.; Frenking, G. J. Phys. Chem. 1995, 99, 9352.

(21) For a previous suggestion of a CH₃ acting as a π -donor see: Sini, G.; Macgregor, S. A.; Eisenstein, O.; Teuben, J. H. Organometallics, 1994, 13, 1049

(22) Here metal-to-methyl back-bonding into C-H antibonding orbitals seems to play a negligible role, at variance with the Ni surface-methyl interaction previously analyzed. $^{\rm 23}$

(23) Schule, J.; Siegbahn, P.; Wahlgren, U. J. Chem. Phys. 1988, 89, 6982. (24) Caulton, K. G. New J. Chem. 1994, 18, 25.

^{(1) (}a) Masters, C. Adv. Organomet. Chem. **1979**, 17, 61. (b) Muetterties, E. L.; Stein, J. Chem. Rev. **1979**, 79, 479. (c) Brady, R. C., III.; Pettit, R. J. Am. Chem. Soc. **1980**, 102, 6181. (d) Bell, A. T. Catal. Rev.–Sci. Eng. **1981**,

Figure 1. ORTEP drawing of the anion $[\text{Re}_3(\mu-\text{H})_3(\mu_3-\text{CH}_3)(\text{CO})_9]^-$ (1) of idealized $C_{3\nu}$ symmetry. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms were given arbitrary radii. Relevant bond distances (Å): Re(1)-Re(2) 2.9936(2); Re(1)-Re(3) 2.9796(2); Re(2)-Re(3) 2.9778(2); Re(1)-C(1) 2.417(4); Re(2)-C(1) 2.375(4); Re(3)-C(1) 2.411(4).

Chart 1

In solution, the observed $C_{3\nu}$ symmetry could arise (i) from the presence of a single (static or dynamic) symmetrical tautomer (either the solid-state isomer I, or II in Chart 1); (ii) from the presence of a single unsymmetrical tautomer in which a fast exchange equalizes different hydrogens (either III or IV in Chart 1); (iii) from a fast exchange among different tautomers. The last hypothesis is very unlikely, since the δ and J_{CH} values do not vary significantly from 298 to 193 K¹⁴ (the position of the equilibria should be temperature sensitive). To discriminate between (i) and (ii) we prepared partially deuterated samples of **1** (**1**-*d*, see Supporting Information), since it is known²⁵ that the preference of deuterium for stiffer bonds results in significant, temperature-dependent, isotope shifts in the presence of fast equilibria among different proton sites.²⁶ In the present case the $\Delta\delta$ between the resonances of the CH3, CH2D, and CHD2 isotopomers were small (-35 and -37 ppb at 298 K, of the same order of magnitude of geminal deuterium isotopic effects)²⁸ and slightly decreased with a lowering of the temperature (-25 and -32 ppb at 193 K), instead of showing the increase typical of fluxional systems. We think, therefore, that the unique signal of CH₃ arises from a true $C_{3\nu}$ symmetry in solution. The solid-state conformer I is preferred over II on the basis of ¹H relaxation measurements performed on **1-d**,²⁹ the pseudopotential density functional calculations,³⁰ and the results of previous computations on methyl adsorption on metal surfaces.³¹ The weakening of the C-H bonds suggested by the ¹J_{CH} value (117.3 Hz)³² is to be ascribed to the C-H bonding character of the methyl orbitals involved in the π donation.³³

The stability of the μ_3 -CH₃ coordination in **1** likely stems from two main factors. The presence of bridging hydrogens on all of the Re–Re interactions prevents the easy reversible C–H oxidative addition, postulated on metals^{3f} and observed in previous examples of clusters bound CH_x fragments.^{9,11} The bridging location of CH₃ and of the hydrides, on the other hand, hampers CH₄ elimination. Investigation to compare the reactivity of **1** with that of surface methyls is in progress.

Acknowledgment. The authors are indebted to Mr. Pasquale Illiano for his skillful acquisition of the NMR data and to a reviewer for his help in the interpretation of our theoretical results.

Supporting Information Available: Details of the NMR characterization, X-ray diffraction structural determination and quantum mechanical calculations (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA983379M

(27) Carlucci, L.; D'Alfonso, G.; Proserpio, D. Organometallics, submitted for publication.

(28) See for instance: Bernheim, R. A.; Batiz-Hernandez, H. J. Chem. Phys. **1966**, *45*, 2261.

(29) Assuming the eclipsed conformation I, the dipolar interaction of the methyl hydrogens with all of the Re atoms nicely accounts for the relaxation rate not provided by the dipolar H-H mechanism (see Supporting Information).

(30) Geometries of the stationary points have been optimized within C_s symmetry; however, final geometries of both the eclipsed (I) and the staggered (II) structures have $C_{3\nu}$ symmetry. I corresponds to the minimum energy conformation; II, which is 10.1 kcal mol⁻¹ higher in energy, is likely to be the transition structure for the rotation of the μ_3 -methyl ligand around the C_{Me} –Re₃ axis. The conformations showing one (III) or two (IV) agostic interactions are high-energy nonstationary points on the potential energy surface.

(31) (a) Zheng, C.; Apeloig, Y.; Hoffmann, R. J. Am. Chem. Soc. **1988**, *110*, 749. (b) Yang, H.; Whitten, J. L. J. Am. Chem. Soc. **1991**, *113*, 6442.

(32) This value is intermediate between the values typical of "3c-2e" agostic interactions (range 60-90 Hz)⁸ and those reported for terminal, not agostic, methyl groups (130–140 Hz, see for instance: Green, J. C.; Payne, M. P. *Magn. Res. Chem.* **1987**, *25*, 544).

(33) Vibrational C–H mode softening for CH₃ adsorbed on metal surfaces has often been observed.^{3f} A ν (CH) value of 2680 cm⁻¹ was measured in ref d, and a value of 2709 has been calculated in ref 23. The unambiguous attribution of the ν (C–H) modes of **1** is hampered by the presence of the cation and of chlatrated solvent. By comparison with **1-d** we can tentatively assign to ν (C–H) a broad band at 2740 cm⁻¹.

⁽²⁵⁾ Siehl, H.-U. Adv. Phys. Org. Chem. 1987, 23, 63.

⁽²⁶⁾ Many applications to fluxional agostic systems have been published,⁸ after the first elegant report,⁹ and the observed shifts are on the order of tenths of ppm. See for instance: (a) 340, 390 ppb at 308 K and 550, 680 ppb at 197 K in $[Os_3(\mu-H)(\mu-HCH_2)(CO)_{10}]$,⁹⁶ (b) 290, 270 ppb at 293 K in $[Fe_3(\mu-H)(\mu_3-H_2CH)(CO)_9]$;^{11b} (c) 270, 330 ppb at 243 K and 325, 414 ppb at 203 K in $[Re_2(\mu-H)(\mu-CH_3)(CO)_8]$.²⁷