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Surface methyls have been proposed as intermediates in
Fischer-Tropsch synthesis1 and in methane activation over
metals.2 Several studies have provided evidence for CH3 on metal
surfaces3 and in most cases vibrational spectroscopies have sug-
gested aC3V symmetry,3d-f either in a top-site or in a 3-fold hollow
site. Transition-metal clusters are considered reliable models of
the metal surfaces in chemisorption and catalysis4 because they
offer the possibility of stabilizing unsaturated intermediates
through multicenter interactions. However, until now noC3V
coordinated methyls were known in cluster chemistry.5 The only
previous example of aµ3-methyl in a triangular cluster,6 namely
[Fe3(µ-H)(µ3-H2CH)(CO)9],11 showed agostic interactions lower-
ing the symmetry toCs. Moreover, this species was detected only
by 1H NMR, due to its thermal instability. The [Re3(µ-H)3(µ3-
CH3)(CO)9]- anion (1) here reported offers, therefore, the first
opportunity for a full characterization, in the solid state and in
solution, of a methyl group interacting with three transition metals.

The anion1 is obtained in high yield by reacting the unsaturated
anion [Re3(µ-H)3(µ3-H)(CO)9]- 12 with CH2N2.13 The NMR data

indicate aC3V symmetry of the whole anion,14 in agreement with
the solid-state structure (Figure 1).16 1 contains a nearly equilateral
metal atom triangle capped by a triple-bridging methyl ligand,
with three hydrides bridging the Re-Re edges on the side opposite
theµ3-methyl ligand. The Re-CMe distance in the triple-bridging
methyl complex1 (mean 2.401 Å) is longer than those found for
terminal and double-bridging methyl ligands in [Re3(µ-CH3)3-
(CH3)6(PEt2Ph)2] (mean 2.158 and 2.304 Å, respectively).10 The
methylic hydrogens have been located as eclipsed with respect
to the CMe-Re bonds and directed away from the triangular plane.
If the methyl group were regarded as a one-electron donor (iso-
lobal with hydrogen), the anion1 would be a “super-unsaturated”
species (44 valence electrons), as the [Re3(µ-H)3(µ3-H)(CO)9]-

12 and [Re3(µ-H)3(µ3-AuPPh3)(CO)9]- 17 anions, requiring formally
two double Re-Re bonds, delocalized on the three edges.
However, the average Re-Re bond distance in1 (2.984 Å) is
longer than that observed in the AuPPh3 derivative (2.894 Å)17

and comparable to those found for the (saturated) species [Re3-
(µ-H)3(µ3-OH)(CO)9]- (2.979 Å)18 and [Re3(µ-H)3(µ3-O)(CO)9]2-

(2.966 Å).19 This suggests that the methyl ligand should act as a
“more-than-one-electron donor”. Theoretical calculations20 have
indeed evidenced bothσ andπ donations21 to the cluster moiety,22

the latter giving rise, in the light of its C/H (hence Re/H) bonding
character and of the short Re‚‚‚H distances (2.269 Å) and small
Re-C-H angles (68.6°), to some degree of agosticity. The title
anion can thus be viewed either as aπ-stabilized unsaturated
species24 or as a saturated one, assuming that the twoπ orbitals
formally donate four electrons.
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In solution, the observedC3V symmetry could arise (i) from
the presence of a single (static or dynamic) symmetrical tautomer
(either the solid-state isomer I, or II in Chart 1); (ii) from the
presence of a single unsymmetrical tautomer in which a fast
exchange equalizes different hydrogens (either III or IV in Chart
1); (iii) from a fast exchange among different tautomers. The last
hypothesis is very unlikely, since theδ and JCH values do not
vary significantly from 298 to 193 K14 (the position of the
equilibria should be temperature sensitive). To discriminate
between (i) and (ii) we prepared partially deuterated samples of
1 (1-d, see Supporting Information), since it is known25 that the
preference of deuterium for stiffer bonds results in significant,
temperature-dependent, isotope shifts in the presence of fast
equilibria among different proton sites.26 In the present case the

∆δ between the resonances of the CH3, CH2D, and CHD2
isotopomers were small (-35 and-37 ppb at 298 K, of the same
order of magnitude of geminal deuterium isotopic effects)28 and
slightly decreased with a lowering of the temperature (-25 and
-32 ppb at 193 K), instead of showing the increase typical of
fluxional systems. We think, therefore, that the unique signal of
CH3 arises from a trueC3V symmetry in solution. The solid-state
conformer I is preferred over II on the basis of1H relaxation
measurements performed on1-d,29 the pseudopotential density
functional calculations,30 and the results of previous computations
on methyl adsorption on metal surfaces.31 The weakening of the
C-H bonds suggested by the1JCH value (117.3 Hz)32 is to be
ascribed to the C-H bonding character of the methyl orbitals
involved in theπ donation.33

The stability of theµ3-CH3 coordination in1 likely stems from
two main factors. The presence of bridging hydrogens on all of
the Re-Re interactions prevents the easy reversible C-H
oxidative addition, postulated on metals3f and observed in previous
examples of clusters bound CHx fragments.9,11 The bridging
location of CH3 and of the hydrides, on the other hand, hampers
CH4 elimination. Investigation to compare the reactivity of1 with
that of surface methyls is in progress.
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Figure 1. ORTEP drawing of the anion [Re3(µ-H)3(µ3-CH3)(CO)9]- (1)
of idealizedC3V symmetry. Displacement ellipsoids are drawn at the 30%
probability level. Hydrogen atoms were given arbitrary radii. Relevant
bond distances (Å): Re(1)-Re(2) 2.9936(2); Re(1)-Re(3) 2.9796(2);
Re(2)-Re(3) 2.9778(2); Re(1)-C(1) 2.417(4); Re(2)-C(1) 2.375(4);
Re(3)-C(1) 2.411(4).

Chart 1
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